
Named Entity Disambiguation using Linked
Data

Danica Damljanovic and Kalina Bontcheva

Department of Computer Science, University of Sheffield
Regent Court, 211 Portobello Street, Sheffield, UK
d.damljanovic, k.bontcheva@dcs.shef.ac.uk

1 Introduction

Identification of Named Entities (NE) such as people, organisations and loca-
tions is fundamental to semantic annotation and is the starting point of more ad-
vanced text mining algorithms. For instance, sentiment analysis is widely used in
finance to extract the latest signals and events from news that could affect stock
prices. However, before extracting company-related sentiment, it is necessary to
identify the documents containing the corresponding and unambiguous company
entities. Humans usually resolve ambiguities based on context. We argue that
Linked Data can be a valuable source for extending the already available context.
We combine a state-of-the-art named entity tool with novel Linked Data-based
similarity measures and show that our algorithm can improve disambiguation
accuracy on a subset of Wikipedia user profiles.

2 Entity Linking and Disambiguation Algorithm

The goal of the algorithm is to identify named entities in text and attach the
correct DBpedia URI to each one of them. For the former, we use the ANNIE
Information Extraction system from GATE [1]. It combines some small lists of
names (e.g. days of the week, months) and rule-based grammars, to processes
text and produce NE types such as Organization, Location and Person. ANNIE
also resolves coreference so that entities with the same meaning are linked. For
example, General Motors and GM would be identified as referring to the same
entity.

GATE’s ontology-based gazetteer, namely the Large Knowledge Gazetteer
(LKB), is used for entity linking. LKB performs lookup and assigns URIs to
words/phrases in the text. For the purpose of our application, we match only
against the values of the rdf:label and foaf:name properties, for all instances of
the dbpedia-ont:Person, dbpedia-ont:Organisation and dbpedia-ont:Place classes.

Both ANNIE and LKB can be used independently, however, while NE types
generated by ANNIE miss the URI which is necessary to disambiguate them,
LKB does not use any context, which results in generating many spurious en-
tities. For example, each letter B is annotated as a possible mention of dbpe-
dia:B %28Los Angeles Railway%29, which refers to a line called B operated by
Los Angeles Railway. We next describe the algorithm which filters out such noise,
by consolidating the output of ANNIE and LKB, followed by a disambiguation
step. A high-level pseudo code looks as follows:



2

1. Identify NEs (Location, Organisation and Person) using ANNIE

2. For each NE add URIs of matching instances from DBpedia

3. For each ambiguous NE calculate disambiguation scores

4. Remove all matches except the highest scoring one

The disambiguation algorithm uses context in which the particular entity appears
and a weighted sum of the following three similarity metrics:

– String similarity : refers to the Levenshtein distance between the text string (such
as Paris), and the labels describing the entity URIs (for example, Paris Hilton,
Paris and Paris, Ontario).

– Structural similarity is calculated based on whether the ambiguous NE has a re-
lation with any other NE from the same sentence or document. For example, if
the document mentions both Paris and France, then structural similarity indicates
that Paris refers to the capital of France. All other entity URIs can be disregarded,
based on the existing relationship between dbpedia:Paris and dbpedia:France.

– Contextual similarity is calculated based on the probability that two words have a
similar meaning as in a large corpus (DBpedia abstracts in our case) they appear
with a similar set of other words. To implement that we use the Random Indexing
method [2] and calculate similarity using the cosine function.

3 Experiments

We manually labelled the corpus with 100 Wikipedia user profiles to create a gold stan-
dard against which we can evaluate performance, using precision, recall and f-measure.
Table 1 summarises the results. The addition of ANNIE to the DBpedia lookup using

Precision Recall F-measure

LKB 0.03 0.86 0.05

LKB+ANNIE 0.14 0.81 0.24

LKB+ANNIE+Disambiguation 0.84 0.80 0.82
Table 1. Precision, recall and f-measure of the different algorithms

LKB improved precision at a slight cost in recall. Adding the disambiguation layer
results in further improved precision with slightly lower recall. However this results in
an overall improvement in f-measure, which rises to 0.82. This shows that our disam-
biguation algorithm which exploits Linked Data as an additional knowledge source,
eliminated a large number of incorrect annotations.

Acknowledgements This research has been supported by the EU-funded FP7
TrendMiner1 project.

1 http://www.trendminer-project.eu/


