
DEFENDER: a DEcomposer For quEries
agaiNst feDERations of endpoints

Gabriela Montoya1, Maria-Esther Vidal1, and Maribel Acosta1,2

1 Universidad Simón Boĺıvar, Venezuela
{gmontoya, mvidal, macosta}@ldc.usb.ve

2 Institute AIFB, Karlsruhe Institute of Technology, Germany
maribel.acosta@kit.edu

Abstract. We present DEFENDER and illustrate the benefits of iden-
tifying promising query decompositions and efficient plans that combine
results from federations of SPARQL endpoints. DEFENDER is a query
decomposer that implements a two-fold approach. First triple patterns
in a SPARQL query are decomposed into simple sub-queries that can be
completely executed on one endpoint. Second, sub-queries are combined
into a feasible bushy tree plan where the number of joins is maximized
and the height of tree is minimized. We demonstrate DEFENDER and
compare its performance with respect to state-of-the-art RDF engines for
queries of diverse complexity, networks with different delays, and dataset
differently distributed among a variety of endpoints.

1 Introduction

During the last years, the number of datasets in the Cloud of Linked Data has ex-
ploded as well as the number of SPARQL endpoints that provide access to these
datasets1. Although existing endpoints should be able to execute any SPARQL
query, some endpoints reject the execution of queries whose estimated execution
time or cardinality is greater than a certain number, while others simply time out
without producing any answer. With the appropriate endpoint technology not
ready, there is a need to develop techniques to decompose complex queries into
queries that can be executed as well as strategies to integrate retrieved data. We
present DEFENDER a decomposer for queries against federations of endpoints
that stores information about the available endpoints and the ontologies used
to describe the data accessible through the endpoints, and decomposes queries
into sub-queries that can be executed by the selected endpoints. Additionally,
DEFENDER combines sub-queries into an execution plan where the number of
joins is maximized and the height is minimized. The former condition implies
that the number of Cartesian Products is minimized, while the latter benefits the
generation of plans where leaves can be independently executed. DEFENDER
was implemented on top of ANAPSID [1], an adaptive query engine for the
SPARQL 1.1 federation extension2 that adapts query execution schedulers to

1 http://labs.mondeca.com/sparqlEndpointsStatus/
2 http://www.w3.org/TR/rdf-sparql1-query/



data availability and runtime conditions. We demonstrate the performance of
the plans identified by DEFENDER, and show that these plans are competitive
with the plans generated by existing RDF engines.

2 The DEFENDER Architecture

DEFENDER comprises a Query Planner, an Adaptive Query Engine and a Cat-
alog of Endpoint Descriptions. DEFENDER current version is built on top of
ANAPSID, a SPARQL 1.1 adaptive query engine that opportunistically pro-
duces results even when endpoints become blocked while sending data. The
DEFENDER Query Planner is composed of two main components: the Query
Decomposer and the Heuristic-Based Query Optimizer. The former divides set of
triple patterns in SPARQL 1.0 queries into sub-sets of triple patterns that will
be executed against the available endpoints; it implements a greedy algorithm
to group in the same sub-query the triple patterns that share one variable and
can be executed by the same endpoint. The query decomposer begins creating
single sub-queries with triple patterns, then it merges the sub-queries that share
exactly one variable, and repeats this process until a fixed-point is reached in
the process of creating the sub-queries.

DEFENDER

Query Planner

SPARQL 1.1 Query

Heuristic-
Based Query 
Optimizer

Query 
DecomposerQuery

Catalog of
Endpoint 
Descriptions

Endpoint Endpoint

Adaptive Plan
SPARQL 1.0 Query

ANAPSID

Bushy Tree Plan

Adaptive Query Engine

Fig. 1. The DEFENDER Architecture

Once the query is rewritten in SPARQL 1.1, heuristic-based optimization
techniques are followed to generate a bushy tree plan, where the leaves corre-
spond to the sub-queries previously identified. Optimization techniques do not
rely on statistics recollected from the endpoints, just information about predi-
cates in the dataset accessible through the endpoint. A greedy heuristic-based
algorithm is implemented; it traverses the space of bushy plans in iterations and
outputs a bushy tree plan of the SPARQL 1.1 query where the number of joins



is maximized and the height of tree is minimized; thus, the size of intermediate
results and the number of HTTP requests are reduced.

3 Demonstration of Use Cases

Consider the following SPARQL 1.0 query: Retrieve diseases and genes associ-
ated with drugs tested in clinical trials where Prostate Cancer was studied.

(0) SELECT DISTINCT ?II ?D ?GN2
(1) WHERE {
(2) ?CT1<http://data.linkedct.org/resource/linkedct/condition> ?C1 .
(3) ?CT1 <http://data.linkedct.org/resource/linkedct/intervention> ?I .
(4) ?I <http://data.linkedct.org/resource/linkedct/intervention type> ”Drug” .
(5) ?C1 <http://www.w3.org/2000/01/rdf-schema#seeAlso> ?D.
(6) ?I <http://www.w3.org/2000/01/rdf-schema#seeAlso> ?II.
(7) ?C <http://data.linkedct.org/resource/linkedct/condition name> ”Prostate Cancer” .
(8) ?CT <http://data.linkedct.org/resource/linkedct/intervention> ?I .
(9) ?CT <http://data.linkedct.org/resource/linkedct/condition> ?C .
(10) ?D <http://www4.wiwiss.fu-berlin.de/diseasome/resource/diseasome/associatedGene> ?GN2 .
(11) ?D <http://www4.wiwiss.fu-berlin.de/diseasome/resource/diseasome/possibleDrug> ?II}

The result set is composed of 192 tuples when data from the datasets Dis-
easome and LinkedCT are retrieved. However, if the query is run against ex-
isting endpoints, Diseasome3 or LinkedCT4, the answer is empty. This problem
is caused by the need to traverse links between these datasets to answer the
query. Still, the majority of existing endpoints have been created for lightweight
use and they are not able to dereference data from other datasets. DEFENDER
decomposes the former query into the following SPARQL 1.1 query which is
comprised of four sub-queries:

SELECT ?II ?D ?GN2
WHERE {

{ SERVICE <http://www4.wiwiss.fu-berlin.de/diseasome/sparql> {
?D <http://www4.wiwiss.fu-berlin.de/diseasome/resource/diseasome/associatedGene> ?GN2 .
?D <http://www4.wiwiss.fu-berlin.de/diseasome/resource/diseasome/possibleDrug> ?II. } }.

{ SERVICE <http://linkedct.org/sparql> {
?I <http://data.linkedct.org/resource/linkedct/intervention type> ”Drug” .
?CT1 <http://data.linkedct.org/resource/linkedct/condition> ?C1 .
?CT1 <http://data.linkedct.org/resource/linkedct/intervention> ?I .
?C1 <http://www.w3.org/2000/01/rdf-schema#seeAlso> ?D. }} .

{ SERVICE <http://linkedct.org/sparql> {
?C <http://data.linkedct.org/resource/linkedct/condition name> ”Prostate Cancer” .
?CT <http://data.linkedct.org/resource/linkedct/condition> ?C. }}.

{ SERVICE <http://linkedct.org/sparql> {
?I <http://data.linkedct.org/resource/linkedct/intervention type> ”Drug” .
?I <http://www.w3.org/2000/01/rdf-schema#seeAlso> ?II .
?CT <http://data.linkedct.org/resource/linkedct/intervention> ?I }}. }

Once the query is decomposed, DEFENDER builds a plan that combines the
sub-queries; the generated plan minimizes intermediate results and the number of
HTTP requests. During the demonstration, attendees will be able to observe the

3 http://www4.wiwiss.fu-berlin.de/diseasome/sparql
4 http://data.linkedct.org/sparql/



behavior of any of the 29 queries against the FedBench collections: cross-domain,
linked data and life science [2]. These queries include 24 FedBench queries and
5 conjunctive queries, i.e., graph pattern queries5; conjunctive queries are com-
prised of between 6 and 16 triple patterns and can be decomposed into up to 7
sub-queries. FedBench collections will be accessed through 8 Virtuoso6 endpoints
which time out at 240 secs. or 71,000 tuples. Endpoint simulators will be used to
configure data transfer delays, endpoint availability and network packet size; this
simulator is comprised of servers and proxies. Servers correspond to real end-
points that are contacted by the proxies, which send data between servers and
RDF engines following a particular transfer delay and respecting a given network
packet size. We will consider three types of delays and run 24 instances of this
script that will be listened on different ports. The delay will follow a gamma dis-
tribution with different average latency to simulate fast, medium fast, and slow
networks, and set up different network packet sizes. Additionally, we produced
SPARQL 1.1 queries for these decompositions and executed these queries in
ARQ 2.8.8. BSD-style7 that supports the Federation extension of SPARQL 1.1.
We will demonstrate the behavior of ARQ, DEFENDER, and FedX [3] in these
network configurations. Also, we will illustrate the impact of different decompo-
sitions and plans on the performance of these engines and the completeness of
their answers. The attendees will observe:

Effects of network delays on query execution performance. In an ideal
network without delays, we will observe that ARQ may time out without
producing any answer, while DEFENDER may be able to finalize the query
processing task before reaching a timeout of 300 secs. On the other hand,
delays considerably may affect the performance of DEFENDER and ARQ
depending on the type of decomposition. For example, the majority of queries
may either time out or produce empty answers when unitary sub-queries are
executed, i.e., when sub-queries are comprised of only one triple pattern. In
contrast, plans comprised of non-unitary sub-queries, i.e, the ones identified
by DEFENDER, are not equality affected by network delays. Although DE-
FENDER performance can be deteriorated, execution time of around half
of the queries remain in the same order of magnitude with respect to these
queries executed in a perfect network. ARQ is also able to execute some of
these plans in the delayed networks without decreasing performance signif-
icantly. The observed behavior of the plans comprised of DEFENDER sub-
queries is caused by a reduced number of HTTP requests as well as the size
of intermediate results which usually can be delivered from the endpoints
in a small number of network packets. Thus, even in presence of delayed
networks, the performance of these plans is acceptable.

Answer completeness when different decompositions are executed. In
a perfect network, DEFENDER and ARQ produce all the answers for the
majority of the queries before timing out. On the other hand, when delays

5 http://www.ldc.usb.ve/~mvidal/FedBench/queries/ComplexQueries
6 http://virtuoso.openlinksw.com/
7 http://sourceforge.net/projects/jena/



are considered the quality is decreased, mainly when plans are comprised
of unitary sub-queries are executed. These results are consequence of the
poorly performance exhibited by both engines when unitary sub-queries are
run. However, if the size of intermediate results remains small, quality is
not equally affected in plans identified by DEFENDER even in presence of
network latency. We will also show the scenario where the same predicate is
accessible through different endpoints and demonstrate how dataset distri-
butions impact on the completeness of the query answer.

Effects of the plan shape on execution time and answer completeness.
Optimal bushy trees, left-linear plans and naive bushy trees8 will be gener-
ated for each query and executed in ARQ, DEFENDER and FedX. DE-
FENDER plans may reduce execution time by up to one order of magnitude
when optimal bushy trees are executed. FedX also exhibits good performance
when FedBench queries are executed, being able to produce most of the an-
swers. In contrast, DEFENDER plans may outperform the ones generated by
FedX when the queries are comprised of a large number of triple patterns.
Bushy trees are able to scale up to large or complex conjunctive queries,
and are competitive with other execution strategies when simple queries are
processed. Finally, the execution time of plans comprised of the sub-queries
identified by DEFENDER is low; these plans may reduce by up to two orders
of magnitude the time consumed by plans comprised of unitary sub-queries
in ARQ and DEFENDER.

4 Conclusions

We present DEFENDER and illustrate results that suggest that our proposed
techniques may reduce execution times by up to two orders of magnitude, and
are able to produce answers when other engines fail. Also, depending on data
distributions among different endpoints and transfer delays, DEFENDER query
plans overcome plans generated by existing RDF engines if size of intermediate
results and the number of HTTP requests are reduced.

References

1. M. Acosta, M.-E. Vidal, T. Lampo, J. Castillo, and E. Ruckhaus. Anapsid: an
adaptive query processing engine for sparql endpoints. In Proceedings of the 10th
international conference on The semantic web - Volume Part I, ISWC’11, pages
18–34, Berlin, Heidelberg, 2011. Springer-Verlag.

2. M. Schmidt, O. Görlitz, P. Haase, G. Ladwig, A. Schwarte, and T. Tran. Fedbench:
A benchmark suite for federated semantic data query processing. In International
Semantic Web Conference (1), pages 585–600, 2011.

3. A. Schwarte, P. Haase, K. Hose, R. Schenkel, and M. Schmidt. Fedx: Optimization
techniques for federated query processing on linked data. In International Semantic
Web Conference, pages 601–616, 2011.

8 A naive bushy tree is a binary tree where Cartesian products can be presented.


