
Did you validate your ontology? OOPS!

María Poveda-Villalón, Mari Carmen Suárez-Figueroa, Asunción Gómez-Pérez
Ontology Engineering Group. Departamento de Inteligencia Artificial.

Facultad de Informática, Universidad Politécnica de Madrid.

Campus de Montegancedo s/n.

28660 Boadilla del Monte. Madrid. Spain

 {mpoveda, mcsuarez, asun}@fi.upm.es

Abstract. The application of methodologies for building ontologies can im-

prove ontology quality. However, such quality is not guaranteed because of the

difficulties involved in ontology modelling. These difficulties are related to the

inclusion of anomalies or bad practices within the ontology development. Sev-

eral authors have provided lists of typical anomalies detected in ontologies dur-

ing the last decade. In this context, our aim in this paper is to describe OOPS!

(OntOlogy Pitfall Scanner!), a tool for detecting pitfalls in ontologies.

Keywords: pitfalls, bad practices, ontology evaluation, ontology engineering

1 Introduction

The growing interest during the last decades of practitioners in ontology development

methodologies have supposed a step forward in transforming the art of building on-

tologies into an engineering activity. The correct application of such methodologies

benefits ontology quality. However, such quality is not totally guaranteed because

developers must tackle a wide range of difficulties and handicaps when modelling

ontologies [1, 2, 5, 8]. These difficulties can imply the appearance of the so-called

anomalies or bad practices in ontologies. Therefore, it is important to evaluate the

ontologies before using or reusing them in other ontologies or semantic applications.

One of the crucial issues in ontology evaluation is the identification of anomalies

in the ontologies. In this regard, it is worth mentioning that Rector et al. [8] describe a

set of common errors made by developers during the ontology modelling. Moreover,

Gómez-Pérez [4] proposes a classification of errors identified during the evaluation of

different features such as consistency, completeness, and conciseness in ontology

taxonomies. Finally, Poveda et al. [7] identify an initial catalogue of common pitfalls.

In this context, our goal within this paper is to present an automated tool to help

ontology practitioners by detecting common pitfalls during the ontology development.

This tool is called OOPS! (OntOlogy Pitfall Scanner!) and represents a new option for

ontology developers within ontology evaluation tools as it enlarges the list of errors

detected by most recent and available works (e.g. MoKi
1
 [6] and XD Analyzer

2
). In

addition, OOPS! can be executed independently of the ontology development plat-

1 https://moki.fbk.eu/moki/tryitout/index.php/Main_Page (Last visit on 14-04-2012)
2 http://neon-toolkit.org/wiki/XDTools (Last visit on: 14-04-2012)

https://moki.fbk.eu/moki/tryitout/index.php/Main_Page
http://neon-toolkit.org/wiki/XDTools

form without configuration or installation and it also works with main web browsers

(Firefox, Chrome, Safari and Internet Explorer
3
).

The remainder of this paper is structured as follows: Section 2 presents the main

OOPS! features while Section 3 describes its architecture. Finally Section 4 outlines

some conclusions and future steps to improve OOPS!.

2 OOPS! features

OOPS! scans ontologies looking for potential pitfalls that could lead to modelling

errors [7]. OOPS! is intended to be used by ontology developers during the ontology

validation activity, particularly during the diagnosis task. Its main functionality is to

analyze ontologies
4
 (a) via URL in which an ontology is located or (b) via text input

containing the RDF code of the ontology. As a result of the analysis, OOPS! informs

developers about which elements of the ontology are possibly affected by pitfalls.

Fig. 1 shows OOPS! home page
5
 where a user can enter an ontology to be analyzed

via URL or by pasting RDF code in the box. This page also presents a brief descrip-

tion of OOPS!.

URI

RDF code

Fig. 1. OOPS! home page

As result of analyzing the ontology provided by the user, OOPS! generates, as it is

shown in Fig. 2, a new web page listing the pitfalls appearing in the ontology. This

3 You may experience some layout strange behaviours with Internet Explorer.
4 The ontology to be analyzed must be implemented in OWL

(http://www.w3.org/TR/2009/REC-owl2-primer-20091027/) or RDF

(http://www.w3.org/TR/2004/REC-rdf-primer-20040210/).
5 http://www.oeg-upm.net/oops

list provides information about (a) how many times a particular pitfall appears, (b)

which specific ontology elements are affected by such a pitfall, and (c) a brief de-

scription about what the pitfall consist on.

Up to the moment of writing this paper, OOPS! helps to detect a subset of 21 pit-

falls of those included in the catalogue
6
. Among others, appearances of pitfalls related

to obtaining unexpected inferences (e.g., P6 and P19), to obtaining no inference (e.g.,

P12 and P13), and to usability issues (e.g., P8 and P11) are considered in OOPS!.

Pitfall name Pitfall frequency

Pitfall description

Ontology elements
affected by the pitfall

Fig. 2. Example of evaluation results generated by OOPS!

The current pitfall catalogue is included in the OOPS! web site. It is worth men-

tioning that the catalogue is continuously revised, since new kinds of modelling mis-

takes could appear as new ontologies are developed and evaluated. For example, pit-

falls from P25 to P29 have been implemented in OOPS! extending the previous cata-

logue published in [6]. In addition, a form to suggest new pitfalls
7
 is provided so that

users can contribute enlarging the pitfall catalogue.

It is worth mentioning that OOPS! output points to ontology elements identified as

potential errors but not necessarily factual errors and it depends on the type of pitfall

detected. There are pitfalls that OOPS! detects in a automated way (e.g., P8 and P28)

which means that they should be repaired; while others are detected in a semi-

automated way (e.g., P13 and P24), which means that they must be manually checked

in order to discern whether the elements identified actually contain errors.

3 OOPS! Architecture

In this section OOPS! underlying architecture is presented (see Fig. 3) as well as some

technical details. Basically, OOPS! is a web application based on Java EE
8
, HTML

9
,

6 http://www.oeg-upm.net/oops/catalogue.jsp
7 http://www.oeg-upm.net/oops/submissions.jsp
8 http://www.oracle.com/technetwork/java/javaee/overview/index.html
9 http://www.w3.org/html/wg/

jQuery
10

, JSP
11

 and CSS
12

 technologies. The web user interface consists on a simple

view where the user enters the URL pointing to or the RDF document describing the

ontology to be analyzed. Once the ontology is parsed using the Jena API
13

 the model

is scanned looking for pitfalls, from those available in the pitfall catalogue. During

this phase, the ontology elements involved in potential errors are detected as well as

warnings regarding RDF syntax and some modelling suggestions are generated. Fi-

nally, the evaluation results are displayed by means of the web user interface showing

the list of pitfalls appearing, if any, and the ontology elements affected as well as

explanations describing the pitfalls.

OOPS!
Web User Interface

RDF Parser

Evaluation
results

Pitfall Catalogue

P1 P2 P29…

Scanner

Pitfall Scanner
P2 P29…

Warning
Scanner

Suggestion
Scanner

Fig. 3. OOPS! architecture

4 Conclusions and Future Work

In this paper we have presented OOPS! main features and architecture and how this

tool represents a step forward within ontology evaluation tools as (a) it enlarges the

list of errors detected by most recent and available works (e.g. MoKi [6] and XD Ana-

lyzer), (b) it is fully independent of any ontology development environment and (c) it

works with main web browsers (Firefox, Chrome, Safari and Internet Explorer).

OOPS! is currently being tested by Ontology Engineering Group
14

 members in or-

der to debug it and extend its functionality. However, OOPS! has been already used

by other ontology developers who belong to different organizations (such as AtoS,

Tecnalia, Departament Arquitectura, La Salle at Universitat Ramon Llull and Human

Mobility and Technology Laboratory at CICtourGUNE). In fact, OOPS! is freely

available to users on the Web. It includes a link to a feedback form
15

 so that everyone

can test it and provide feedback and suggestions to be included in the tool.

10 http://jquery.com/
11 http://www.oracle.com/technetwork/java/javaee/jsp/index.html
12 http://www.w3.org/Style/CSS/
13 http://jena.sourceforge.net/
14 http://www.oeg-upm.net/
15 http://www.oeg-upm.net/oops/form.jsp

As long as we discover new pitfalls during our research, they will be included in

the current pitfall catalogue and implemented in OOPS!. In addition, we plan to im-

prove and extend OOPS! features in the following lines:

 To group and classify pitfalls by categories according to previous ontology quality

criteria identified in [3] and [4]. This feature will provide more flexibility to the

ontology evaluation, since it will allow users to diagnose their ontologies just with

respect to the dimensions they are interested in.

 To increase OOPS! features with guidelines about how to solve each pitfall. This

information will ease the task of repairing the ontology after the diagnosis phase.

 To associate priority levels to each pitfall according to their different types of con-

sequences they can convey when appearing in an ontology. This feature will be

useful to prioritize actions to be taken during the repairing task.

 To make REST services available in order to allow other developments to use and

integrate the pitfall scanner functionalities within their applications.

 To allow users to define their own pitfalls, according with their particular quality

criteria, in order to use OOPS! in a customized fashion.

Acknowledgments. This work has been partially supported by the Spanish projects

BabelData (TIN2010-17550) and BuscaMedia (CENIT 2009-1026). We would also

like to thank Miguel Ángel García for his technical support.

References

1. Aguado de Cea, G., Gómez-Pérez, A., Montiel-Ponsoda, E., Suárez-Figueroa, M.C. Natural

language-based approach for helping in the reuse of ontology design patterns. In Knowl-

edge Engineering: Practice and Patterns, Proceedings of EKAW 2008, LNCS 5268, pp. 32–

47, 2008.

2. Blomqvist, E., Gangemi, A., Presutti, V. Experiments on Pattern-based Ontology Design. In

Proceedings of K-CAP 2009, pp. 41-48. 2009.

3. Gangemi, A., Catenacci, C., Ciaramita, M., Lehmann J. Modelling Ontology Evaluation and

Validation. Proceedings of the 3rd European Semantic Web Conference (ESWC2006),

number 4011 in LNCS, Budva. 2006

4. Gómez-Pérez, A. Ontology Evaluation. Handbook on Ontologies. S. Staab and R. Studer

Editors. Springer. International Handbooks on Information Systems. Pp: 251-274. 2004.

5. Noy, N.F., McGuinness. D. L. Ontology development 101: A guide to creating your first

ontology.Technical Report SMI-2001-0880, Standford Medical Informatics. 2001.

6. Pammer, V. PhD Thesis: Automatic Support for Ontology Evaluation Review of Entailed

Statements and Assertional Effects for OWL Ontologies. Engineering Sciences. Graz Uni-

versity of Technology. http://know-center.tugraz.at/wp-

content/uploads/2010/12/Dissertation_Viktoria_Pammer.pdf.

7. Poveda, M., Suárez-Figueroa, M.C., Gómez-Pérez, A. A Double Classification of Common

Pitfalls in Ontologies. OntoQual 2010 - Workshop on Ontology Quality at the 17th Interna-

tional Conference on Knowledge Engineering and Knowledge Management (EKAW 2010).

Proceedings of the Workshop on Ontology Quality - OntoQual 2010. ISBN: ISSN 1613-

0073. CEUR Workshop Proceedings. Pages: 1-12. 15 October 2010. Lisbon, Portugal.

8. Rector, A., Drummond, N., Horridge, M., Rogers, J., Knublauch, H., Stevens, R.,; Wang, H.,

Wroe, C. Owl pizzas: Practical experience of teaching owl-dl: Common errors and common

patterns. In Proc. of EKAW 2004, pp: 63–81. Springer. 2004.

