
Sgvizler: A JavaScript Wrapper for Easy
Visualization of SPARQL Result Sets

Martin G. Skjæveland
martige@ifi.uio.no

Department of Informatics, University of Oslo, Norway

Abstract. Sgvizler is a small JavaScript wrapper for visualization of
SPARQL results sets. It integrates well with HTML web pages by let-
ting the user specify SPARQL SELECT queries directly into designated
HTML elements, which are rendered to contain the specified visualization
type on page load or on function call. Sgvizler supports a vast number
of visualization types, most notably all of the major charts available in
the Google Chart Tools, but also by allowing users to easily modify and
extend the set of rendering functions, e.g., specified using direct DOM
manipulation or external JavaScript visualization tool-kits. Sgvizler is
compatible with all modern web browsers.

1 Introduction

The prominent way of displaying data residing in a SPARQL endpoint to a
human user is to list the results of a DESCRIBE query for a given resource in a
table. While tables are good for rendering heterogeneous data, needless to say,
they do not convey the meaning of, e.g., geographical, temporal or quantitative
data as well as respectively maps, timelines or different charts, such as pie charts
and bar charts, do. There are different approaches to leverage this problem:
The Data-gov Wiki project uses XSLT to convert the XML result of SPARQL
SELECT queries into a format edible by the Query interface of the Google Chart
Tools [1], which is used to render the data into charts and maps [2]. SPARQL
Web Pages [3] uses a special-purpose vocabulary to specify how web pages are
to be built from SPARQL query instructions. Spark [4] is a JavaScript library
for processing SPARQL SELECT queries put directly into the HTML markup,
which may be rendered into a list, a table, a line chart or a pie chart, or into
other representations using custom-made visualization functions. Sgvizler [5], the
topic of this paper, is a JavaScript wrapper of SPARQL result set visualization
combining many of the ideas of the above-mentioned approaches into a powerful,
easy-to-use and cross-browser visualization tool.

2 Overview of Sgvizler

Sgvizler is a JavaScript wrapper of SPARQL result set visualization, like Spark.
What makes Sgvizler special is the ease with which it lets one integrate the



visualization of SPARQL SELECT query result sets directly into web pages,
combined with the large number of visualization types it support and its com-
patibility of different origin SPARQL endpoint querying for all major modern
browsers and most SPARQL endpoints. In addition, Sgvizler is built to be easily
extensible by having a clear and simple API for adding user-defined rendering
functions. A few samples of the available visualization types are found in Figure 1
and Figure 2, and Example 1 shows how simply visualizations can be added into
web pages by the use of Sgvizler.

(a) Area Chart (b) Bubble Chart (c) Pie Chart

(d) Geo Map (e) Tree Map (f) Timeline

(g) Sparkline (h) Scatter Chart (i) Force-directed Graph

Fig. 1: Sgvizler chart examples.

Example 1. The snippet below shows the source code of an HTML element
which renders into the chart in Figure 2 on page load. Input data to Sgvi-
zler is set using HTML5 compatible data- prefixed attributes. The endpoint ad-
dress and SPARQL query is given by the attributes data-sgvizler-endpoint and
data-sgvizler-query1, respectively. The chart type to draw (sMap) is specified
with data-sgvizler-chart, and additional options to the rendering function is
listed in data-sgvizler-chart-options. The output format of the SPARQL end-
point is specified with data-sgvizler-format (permissible values are xml, json,
jsonp) and data-sgvizler-loglevel="2" sets the level of feedback given to the
user while preparing the chart.

1 <div id="id1" data-sgvizler-endpoint="http://dbpedia.org/sparql"

2 data-sgvizler-query="SELECT ?lat ?long ?name ?text ?url ?image

3 { ?url a dbpo:AdministrativeRegion ; dct:subject dbp:Rogaland ;

1 The query is simplified to save space; this and other live examples are found at [5].



4 rdfs:label ?name; geo:lat ?lat; geo:long ?long .

5 rdfs:comment ?text; dbpo:thumbnail ?image }"

6 data-sgvizler-chart="sMap"

7 data-sgvizler-chart-options="dataMode=markers|showTip=true"

8 data-sgvizler-format="jsonp"

9 data-sgvizler-loglevel="2"

10 style="width: 800px; height: 600px;"></div>

Fig. 2: An sMap of the municipalities in Roga-

land, Norway—with a fact bubble about Sola.

Sgvizler is lightweight: 31 KB
in minified condition and 6 KB
minified and gzipped. It relies
on external libraries for visu-
alization, endpoint communica-
tion and DOM manipulation.
Currently, the following chart
types and rendering functions
are available: quantitative data
charts (line chart, area chart,
column chart, bar chart, bubble
chart, scatter chart, sparkline,
pie chart, candlestick chart, mo-
tion chart, gauge), hierarchical
data charts (tree map, org chart),
geographical visualizations (maps, geo chart, geo map), graph (force-directed
graph), lists, table and a generic text rendering function. It is released under an
MIT License, and the complete source code, documentation, examples, issues
are available at [5].

2.1 How does it work?

There are three intended ways of using Sgvizler: adding queries directly into
HTML markup—as in Example 1, issuing a query and visualization options
using a HTML form, or by direct JavaScript function call. For this explanation
we will assume the first. On page load all HTML elements designated for Sgvizler
visualization are collected and processed asynchronously. Each query is sent,
together with the format the query results should be returned as—either XML or
JSON, to the specified endpoint using jQuery’s ajax() function [6]. The returned
result set, expected by Sgvizler to be of one of the formats described by W3C [7,
8], is parsed into a Google DataTable object. The DataTable object is then paired
with drawing options and passed to the specified rendering function which fills
the HTML element where the query was collected with its visualization results.

The DataTable class serves as input parameter type for all of the chart func-
tions in Google’s Chart Tools. This means that all these charts are readily avail-
able for Sgvizler visualization. Additionally, Sgvizler is designed such that any
user-defined rendering functions must take a DataTable object as input. This
makes it possible to use the same code for handling all visualization functions
and easy to register new functions. Also, a DataTable object is equipped with



many convenient functions for editing and querying its contents,2 making it a
helpful object to render into new representations.

The sMap function used in Example 1 is an example of a simple user-defined
function. It extends the native Google Map function from three arguments to
six, making it easier to create HTML formatted fact bubbles for points on the
map, as shown in Figure 2. The Force-directed Graph function (see Figure 1i)
is a different example, created entirely by use of the JavaScript visualization
library D3 [9].

2.2 SPARQL Query Design

When designing SPARQL queries for visualization by Sgvizler, the order of the
columns in the result set, i.e., the order of the variables in the SELECT block, is
crucial. As indicated by the variable names in the query found in Example 1,3

the sMap function expects the two first columns in the result set to contain
respectively the latitude and longitude values of points to plot on the map. The
remaining result set columns for sMap set respectively the heading, the body
text, a clickable link and the link to an image to place in the fact bubble which
appears when the point on the map is selected. Different rendering functions have
different requirements on data input format. The data format for each function
is described on the Sgvizler homepage [5].

2.3 Browser and Endpoint Compatibility

Disregarding SPARQL endpoint communication, Sgvizler has the same web
browser compatibility as the external JavaScript libraries it uses. For jQuery
and the Google Chart Tools this means compatibility with all reasonably new
web browsers.4 The compatibility of endpoint communication is a more complex
matter. In general JavaScript has to abide by the same origin policy, a security
measure which, for the purpose of Sgvizler, means that it cannot retrieve data
from a SPARQL endpoint at a different domain, subdomain or port than where
the script lives. This is a precaution that surely does not fit well with the idea
of distributing data with SPARQL endpoints. However, Cross-Origin Resource
Sharing (CORS) [10] is a specification that aims to safely allow such requests
and is supported by most modern browsers—the notable exception being Opera.
In order for CORS to work the endpoint server must be CORS-enabled, meaning
essentially that its header response must include a list of domains (or a wildcard
∗) with which it allows CORS communication. The specification is currently a
W3C Working Draft, and not all SPARQL endpoints are CORS-enabled.

2 See http://code.google.com/apis/chart/interactive/docs/reference.html.
3 Even though the names of the variables in the example indicate their contents, the

actual names are not important for the visualization function.
4 A list of jQuery supported browsers are available at [6]. Google Chart Tools’ infor-

mation on the subject is: “Charts are rendered using HTML5/SVG technology to
provide cross-browser compatibility (including VML for older IE versions) and cross
platform portability to iPhones, iPads and Android.”[1]

http://code.google.com/apis/chart/interactive/docs/reference.html


A second way to circumvent the same origin policy is to use JSONP. Data
retrieved as JSONP is returned as a function call on the data in JSON format,
thus exploiting that the HTML <script> tag is not required to respect the same
origin policy. This, of course, requires that the endpoint can return data in
JSONP format; luckily many do. Sgvizler supports receiving data in JSONP
format. It has successfully been tested on CORS-enabled endpoints with output
formats XML [7] and JSON [8] for the browsers Firefox 3.6, Chrome 12, Internet
Explorer 8 and Safari 5.1, and, as expected, it does not work for Opera 11.51.
On endpoints which return JSONP Sgvizler has been successfully tested also
on Opera 11.51, including all the above-mentioned browsers. For same origin
requests, endpoint communication is no longer a compatibility issue, thus in such
cases Sgvizler works for all browsers compatible with the external JavaScript
libraries used.

3 Future Work

The following future work items have been identified. Technical issues: Reduce
page load time with more parallelization of tasks and selective library import.
Improve Sgvizler’s “external” API. More graph visualizations: RDF data natu-
rally lends itself especially well for graph visualizations. However, the only graph
visualization function available in Sgvizler is currently Force-directed Graph and
it is in early development. Linked Data tool integration: Integrate Sgvizler with
popular Linked Data SPARQL frontends. Vocabulary sensitivity: Make Sgvizler
able to suggest good visualizations based on the vocabulary used by the dataset.

References

1. Google Chart Tools. url: http://code.google.com/apis/chart/.
2. Jin Guang Zheng and Li Ding. How to render SPARQL results using Google

Visualization API. Dec. 2011. url: http://iw.rpi.edu/wiki/How_to_render_S
PARQL_results_using_Google_Visualization_API.

3. Holger Knublauch. SPARQL Web Pages. url: http://uispin.org/.
4. Denny Vrandečić and Andreas Harth. Spark. url: http://km.aifb.kit.edu/si

tes/spark/.
5. Martin G. Skjæveland. Sgvizler. url: http://code.google.com/p/sgvizler/.
6. jQuery. url: http://jquery.com/.
7. Dave Beckett and Jeen Broekstra (eds.) SPARQL Query Results XML Format.

W3C Recommendation. W3C, 2008. url: http://www.w3.org/TR/rdf-sparql-
XMLres/.

8. Kendall Grant Clark, Lee Feigenbaum, and Elias Torres (eds.) Serializing SPARQL
Query Results in JSON. W3C Working Group Note. W3C, 2008. url: http:

//www.w3.org/TR/rdf-sparql-json-res/.
9. Mike Bostock. D3.js. url: http://mbostock.github.com/d3/.

10. Anne van Kesteren (ed.) Cross-Origin Resource Sharing. W3C Working Draft.
W3C, July 2010. url: http://www.w3.org/TR/cors/.

http://code.google.com/apis/chart/
http://iw.rpi.edu/wiki/How_to_render_SPARQL_results_using_Google_Visualization_API
http://iw.rpi.edu/wiki/How_to_render_SPARQL_results_using_Google_Visualization_API
http://uispin.org/
http://km.aifb.kit.edu/sites/spark/
http://km.aifb.kit.edu/sites/spark/
http://code.google.com/p/sgvizler/
http://jquery.com/
http://www.w3.org/TR/rdf-sparql-XMLres/
http://www.w3.org/TR/rdf-sparql-XMLres/
http://www.w3.org/TR/rdf-sparql-json-res/
http://www.w3.org/TR/rdf-sparql-json-res/
http://mbostock.github.com/d3/
http://www.w3.org/TR/cors/

	Sgvizler: A JavaScript Wrapper for Easy Visualization of SPARQL Result Sets

