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Web Information Access:  Keyword Search and Browsin g

� The traditional means of extracting information from the Web are keyword � The traditional means of extracting information from the Web are keyword 
search and browsing

� By using search, the user enters query terms and, if lucky, can read off the 
required information from the returned pages
� Thus one can easily find out 

� What is the name of the eldest daughter of the president of the United 
States? 

� What is the best way to prepare  a turkey?
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� What is the best way to prepare  a turkey?

� In browsing, the user follows hyperlinks to gain a deeper information on an 
issue 



Web Information Access: Semantic Web

� The Semantic Web adds structured information (i.e., semantic annotations 
and references) with new search and browsing capabilitiesand references) with new search and browsing capabilities
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Web Information Access: LOD

� One of the most interesting recent developments here is Linked Open Data 
(LOD)(LOD)
� where information is presented in form of facts -often originating from 

published domain-specific data bases- that can  be accessed by both a 
human and a machine via specific query endpoints

� Thus, one can query for the  
� 10 largest German companies whose CEOs were born in the US 
� A list of: genes associated with a given disease
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� LOD does not just reference information, it  represents information in form of 
simple subject-predicate-object triples



Web Information Access:  Reasoning

� With this novel representation of information, new opportunities for accessing 
information emerge that explore and exploit  regularities in the represented information emerge that explore and exploit  regularities in the represented 
data

� In recent years mostly deterministic regularities, which can be formulated as 
logical expressions, have been explored

� Thus, deductive reasoning might conclude that an author born in Landshut 
would also be recognized as an author born in Bavaria

� Deterministic regularities originate,  for example: 
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� Deterministic regularities originate,  for example: 
� from natural laws (e.g., law of gravity)
� from human definitions and conventions (e.g.,”dogs are mammals”)
� from design(e.g.,”the car only starts when the key is turned”)
� and from laws and regulations (e.g.,”work begins at 9 am”)



Web Information Access: Uncertainty

� In addition to deterministic or close-to-deterministic regularities, the world 
also contains statistical regularitiesalso contains statistical regularities

� One might debate if the world is inherently deterministic or probabilistic, but at 
the abstract level of representation that is typically available for decision 
making, the world certainly appears uncertain

� Although the world might be governed by scientific laws and logical 
constraints in general, at the level of abstraction that we and our applications 
have to function, the world partially appears to be governed by probabilities 
and statistical patterns
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and statistical patterns



Uncertain Expert Knowledge?

� Difficult to get
� Querying of experts� Querying of experts

� Modelling
� + Can brush over details in the model by using probabilities

� Truly a printer or a car is deterministic but at a more abstract level one 
can work with probabilities

� + Truthful if the world is really probabilistic 
� - Conditional probabilities might be difficult to get

� Difficult to do inference

Page 9

� Difficult to do inference
� Problems with loops



Web Information Access: Include Machine Learning

� Young males typically like action movies but whether young Jack will buy  � Young males typically like action movies but whether young Jack will buy  
“Iron Man 2” might depend more on the availability of illegal downloads, the 
opinions of his  peers and Jack's financial situation
� A system recommending a movie to Jack must work with the available 

information, maybe a list of movies that Jack has bought before, and can 
only make statistical recommendations

� Similarly, the interactions between genes and diseases might or might not be 
inherently  deterministic in nature; at the level of current knowledge the 
relationships are only partially known
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relationships are only partially known



Integration into Querying

� Machine learning is a basis for extracting statistical patterns and in this 
tutorial we will describe our  work on statistical machine learning for the Web 
as pursued in the German THESEUS project and in the EU FP7 project 
LarKC 

� In this work we have proposed that statistical patterns extracted from the 
Web via machine learning should be integrated into queries   
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Querying with Statistical Machine Learning:
Find all persons, that live in Munich and who want to be Trelena‘s friends

learn
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Known friends

Recom. Friends



Machine Learning Examples: 

� Thus a search for diseases associated with a particular gene can be done in 
three ways:  

� First,  one can study   the documents returned via  keyword search
� Second, one can obtain a list of diseases known or suspected to be 

associated via a structured query on LOD
� Finally, one can use machine learning to extract diseases likely to be 

related based on disease and gene attributes and established gene-
disease patterns

� Note that machine learning depends on repeatable statistical  patterns: thus 
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� Note that machine learning depends on repeatable statistical  patterns: thus 
machine learning cannot help to give you the first name of the wife of the US-
president (a one-to-one relationship), but it can predict the probability of re-
election, his income,  the party of the vice president and the number of 
expected grand children



Challenges: Unclear statistical setting

� Web data does not represent an i.i.d. (independent and identically distributed)  
statistical sample of some sort but might have been collected and published statistical sample of some sort but might have been collected and published 
for any  reason, often not following a particular systematic

� For similar reasons, the data, in general,  is incomplete, e.g., from the fact 
that a social network lists no  friends of Jack one cannot conclude that Jack 
does not have friends

� In general, negation is very rare on Web data, thus one might find information 
that two persons are friends but rarely that two persons are not friends 
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that two persons are friends but rarely that two persons are not friends 
� This needs to be considered to avoid biased predictions



Challenges: Relationships are important

� Another interesting property of Web data is that relationships between entities 
are often more informative than entity attributes, an effect exploited in are often more informative than entity attributes, an effect exploited in 
collective learning:

� It might be easier to predict Jane's wealth from the wealth of her friends 
than from known properties of Jane. As in this example, nonlocal 
aggregated information is  often  informative for a prediction task and 
machine learning needs to take this into account.
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� Collective learning / collective classification



Challenges: Relationships are of Interest

� Sometimes, as in the examples mentioned in the introduction,  relationships 
themselves are of interest, e.g.,themselves are of interest, e.g.,
� item preferences
� friendships 
� relationships between genes and diseases

� Since the number of potential relationships is generally very large, the output 
of a learning system will often be a ranked list of candidate relationships, e.g., 
a ranked list of recommended items, instead of a single answer
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Challenges: Should be easy to use and easy to apply

� Learning as easy as querying

� Answer any question on the likelihood of a triples at any time 
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Challenges: A Lot of Contextual Information

• After all a triple lives in a graph
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Challenges: Textual Information Available

� Often there is textual information available describing entities 
� Wikipedia pages� Wikipedia pages
� Text as literals

� (basis for the success of IBM Watson)
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Challenges: Scale, dynamics, noisiness

� Information is incomplete

� Information is large scale

� Information might change continuously
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Challenges: Ontological Background Knowledge

� Ontological background is available and should support machine learning

Page 21



Goal

Predictions of all (or a large subset of) possible triples in a 
domain 

with Machine Learning?
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What’s the Problem

Attitude of a naive Machine Learner

Of course I should know what my data means
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� In the Semantic Web / LOD this is what is the challenge!



Linked Open Data is about Presenting and 
Communicating Information

Linked data describes a method of

� publishing structured data so that it can be

� interlinked

and becomes more useful
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Information Elements

Subject Predicate Object

Nicolas
hasFriend Angela
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Information Elements

� Elementary statements providing information on the subject

Subject Predicate Object

Nicolas
hasFriend Angela
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� Elementary statements providing information on the subject
� RDF triples; (Nikolas, hasFriend, Angela) 



What a Computer Understands: How can we get 
meaning?

尼古拉·萨科齐 有朋友 安格拉·默克尔
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Communicating Meaning (“Semantics”): URIs

<http://siemens.com/world-knowledge/Angela><http://siemens.com/world-knowledge/Angela>

<http://siemens.com/world-knowledge/Nikolas> .
.

� Use URIs (Uniform Resource Identifiers)
� The URI might give away meaning (Angela likely is a human being)

<http://siemens.com/world-knowledge/hasFriend>
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� The URI might give away meaning (Angela likely is a human being)



Communicating Meaning (“Semantics”):  Specifying Type s 

<http://siemens.com/world-knowledge/Angela>
<rdf:type>
<Foaf:Person>  .
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Communicating Meaning (“Semantics”):  Specifying Link s

<http://siemens.com/world-knowledge/Angela>

<http://yago-knowledge.org/resource/Angela_Merkel> .

<Owl:sameAs>
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Communicating Meaning (“Semantics”): Meta Data

Meta data (when a triple is not enough):

� Who provided the information (provenance)
� When is the triple valid (“Lincoln is the president of the US”)
� Where is the triple true (“The weather is nice”)

Page 32



Communicating Meaning (“Semantics”): Ontologies

Ontologies:

� subclass hierarchies
� type constraints
� partOf
� geo-reasoning
� sameAs, …
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LOD by Tim Berners-Lee

Tim Berners-Lee outlined four principles of linked data in his 
Design Issues:

� Use URIs to identify things

� Use HTTP URIs so that these things can be referred to and 
looked up ("dereferenced") by people and user agents

� Provide useful information about the thing when its URI is 
dereferenced, using standard formats such as RDF/XML
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dereferenced, using standard formats such as RDF/XML

� Include links to other, related URIs in the exposed data to 
improve discovery of other related information on the Web



Roles of Machine Learning

Supporting LOD� Supporting LOD

� Supports mapping of entities (e.g., are two persons the same) and 
classes (is “student”  the same as “pupil”)

� (Discovers order: ontology learning)
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Roles of Machine Learning

� Supporting Information Retrieval

� Retrieval of similar entities
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Roles of Machine Learning

Enhancing LOD by triple prediction (focus in this t utorial)

� Predict links (triples) that are not explicitly in the data base
� Classes (classical ML problems)
� Attributes (classical ML problems)
� Relationships (classical SRL problems)
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Roles of Machine Learning

Exploiting LOD for ML (focus in this tutorial)

� LOD as a great source of data for ML
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RDF Graph
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RDF Graph with Random Variables
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4e

� Variables (rectangles) representing the truth values of triples
� A one indicates that the triple is known to be true; a zero indicates that 

the triple is untrue
� Color: relation type

1



Goal: Predict new Triples
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4e

� Goal of machine learning: predict triples not known to be true (dashed 
links)

1



Dual Graphs displaying Dependencies and 
Independencies
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� Links in between the variables indicate assumed dependencies and 
independencies (we consider different options)

� Parameterization of dependencies

4e



e e

Dual Graphs in the SUNS Model
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4e

� Links are defined between variables with the same subject entity
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2e
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M predicate1 predicate2 predicate3
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Consider the singular value decomposition (SVD)
The columns of U are mutually orthonormal, the columns of V are mutually orthonormal and 

D is a diagonal matrix with diagonal entries greater or equal to zero and ordered according 
to magnitude

Mathematical Background

TUDVX =

to magnitude
An optimal rank-r reconstruction in the Frobenius norm                      

is 

contain the first r columns of U, resp. V

contains the r leading entries of D

F
XX −ˆ

( ) T
rir VdUX rdiagˆ =

rr VU ,

( )idrdiag
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Consists of the first r columns of U and V and the leading r entries of D
Better performance can be obtained by the regularized version

where              is a regularization parameter
[Tresp, Huang, Bundschus, Rettinger, 2009] [Huang et al., 2010]. 
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Confidence Values for New Triples
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4e

� SUNS prediction for unknown triples
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Example: average income of friends



Properties

Unkown triples
� Unknown triple as negative evidence to be overwritten by machine learning� Unknown triple as negative evidence to be overwritten by machine learning

� Very likely non existing

Scalability
� Exploiting sparse matrix algebra: 

� Computation scales as 
(number of columns) X (number of nonzero elements) X (rank r)

Ontologies and Deduction
� sameAs is resolved
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� sameAs is resolved
� Materialization (deductive closure) prior to learning



Scalability
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Experiments Using the Basic Model on the  FOAF 
Data Set 
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SchoolLocation

1 m

Entity-relationship diagram of LJ-FOAF domain



Data Statistics
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Query Example

learn
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Known friends

Recom. Friends



Experiments with DBpedia Data 

� DBpedia is part of  LOD and contains structured information extracted from 
Wikipedia. It serves as a "nucleus for the web of data”

� Even though DBpedia already provides a great value, it is still limited in the 
information it provides and in terms of quality information it provides and in terms of quality 

Although there are many cities covered in DBpedia, most information, like its most 
famous citizens and its most spectacular sights,  is not very useful  for machine 
learning purposes

� Here we report results using a  population consisting of all members of the 
German Bundestag

� Challenges: 
Incomplete data: Only 101 of 293 members of the German Bundestag represented 

in DBpedia have an entry for the predicate party
Noisy predicates:
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Noisy predicates: For predicates it is often the case that there are semantical 
duplicates, e.g. dbp-prop:party and dbp-ont:party. While duplicate predicates aren't 
a big problem by default, they can become a challenge when they are used 
inconsistently

Noisy objects: E.g. the Christian Democratic Union of Germany was represented by 
the literals "CDU" and "Christian Democratic Union" or the different resources

� In the following experiments the learning challenge was to correctly predict the 
political party for each subject



Preprocessing 

� ORIG: The original data that has been obtained from DBpedia

� DISAMB: After the disambiguation exactly one resource for each party (CDU, CSU, 
SPD, FDP, Alliance '90/The Greens, The Left, Centre Party) was present in the data set

� AGE: In this experiment a continuous feature for the age of each politician has been 
added, by subtracting the birth year (when present) from the year 2010 

� WEIGHT: In this experimental setting the attributes and relations in the dataset have 
been weighted differently. Attributes have been weighted down by multiplying their 
values with 0.4

� STATE: Naturally, the birthplace is not a useful attribute for our task. Filling in the state 
information from the birthplace information can easily be done by exploiting 
geographical part-of-relationships with OWL reasoning by using Ontotext's Linked Data 
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Semantic Repository http://ldsr.ontotext.com (geo-reasoning)

� TEXT: Finally a text mining approach has been added, by tokenizing the objects of the 
predicates comment and abstract and adding one feature for each occurring token. 
When a token is present for a particular statistical unit, the entry is set to 1, else to 0

� ALL: In this experiment all previously described approaches have been combined. 
Since the number of attributes changed, we also changed the weighting factor to 0.2 



Experiments with DBpedia Data

� Worst results with the raw data
� Disambiguation improved results by  7 percent
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� Disambiguation improved results by  7 percent
� Small improvement by adding age
� Weighting improved results
� Textual description, often containing hints on party memberships, improved the 

results to 0.928
� State made a significant contribution
� Best results by the combination of all methods (0.963)

[Huang et al., 2012]



Application (3)
Bottari: Deductive and Inductive Stream Reasoning f or 
Semantic Social Media Analytics

An augmented reality application for personalized recommendation of 
restaurants in Seoul

Winner of the ISWC 

2011 Semantic Web 

Challenge
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Let’s watch the movie                                                  [Celino et al., 2011]



Opinion Mining

Twitter message

Opinion Mining System

Morphological

analysis

analyzable not analyzable

Learned

documents

Support Vector Machine

Syllable kernel

Rule-based method

Automatic 
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Twitter message reputation

documents Syllable kernel
Automatic 

creation method



SUNS (Statistical Unit Node Sets)
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(1) Covariance Matrices and Kernels Matrices
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� The second and third form can easily be applied to new entities (new rows in X) without 
the recalculation of the decomposition (Nystroem approximation)
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SVD:

Covariance decomposition: 

Kernel decomposition: 

TUDVX =
TTT VDDVXX )(=
TTT UDDUXX )(=



We can start with any appropriate kernel K and do a rank r approximation as

Kernel Formulation

( ) TUdUK 2diag=

� (Of course we can also use our kernel                     )

The solution then becomes

( ) T
rirr UdUK 2

rdiag=

TXXK =

LSKWX =ˆ

 1

Page 65

With

We can generalize to new entities using the Nystroem approximation
[Huang et al., 2012]
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(2) A Global SUNS Model
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1+k

M
predicate1 predicate2 predicate3

Movies

Options:
� One SUNS model for each set of entities (defined appropriately)
� Or: One global SUNS model (scalability problems)

[Jiang et al., 2012]
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(3) Limitations of the SUNS model

Consider triples of the form  (user, buys,  movie)
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Consider triples of the form  (user, buys,  movie)

The SUNS model can learn that
� If a user buys movie A this user tends to also buy movie B
� Movie A is often bought by young people 

But it has problems learning that
� John typically buys action movies
� Young people tend to buy action movies
� People tend to buy movies produced in their country of origin
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� People tend to buy movies produced in their country of origin
� If someone watches the trailer of a movie this user tends to buy this movie



Fixing Some of the Limitations

� Consider triples (User, buys, Movie) that is predicted based on
� Triples and aggregated triples describing user attributes: (A)
� Triples and aggregated triples describing movie attributes: (B)
� Interaction terms between (A) and (B) : (C)  
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Movie
Attributes

Aggregated
Movie 
Information

C
•Interaction terms
•Other interesting features

B



Solution: Global Additive Model
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∑
',kk

Young people like action movie term (C)

� Can be optimized via alternating least squares (including regularization and low-rank 
approximations)

� Same complexity as before
� The features can include keywords from textual descriptions
� Feature selection should be applied to (C)
� Many more interesting terms can be added



Predicting Relationships between Genes and  Disease s 
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[Huang et al., 2012] [Jiang et al., 2012]



Gene Disease Prediction (State of the Art Quality)
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(4) Including Textual and Sensory Information

Consider again triples of the form  (user, buys,  movie)

� What we have just obtained is a general additive model where one term corresponds to  
the SUNS model

� We can easily include a term that predicts a triple based in textual or other sensory 
information

• Often textual  is available that can be useful for predicting a triple
� Wikipedia pages describing an author
� Literal  with a brief description of a person
� This information should be made useful for triple prediction
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� This information should be made useful for triple prediction

� Simply include a term

� where v could be parameters that are optimized

),(, vtextIE ji



(5) Predicting triples: Deductive Inference, IE and  
Machine Learning

We are now able to combine three approaches for pre dicting triples

1: Ontologies and Deductive Reasoning
� Materialization (deductive closure) prior to learning

2: Information Extraction

3: Statistical Relational Learning
� Exploiting correlations in the target relation
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[Jiang et al., 2012]



Predicting Writer‘s Nationalities (Yago Data)
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(6) A Probabilistic Interpretation

� A factor model as presented has a probabilistic interpretation
� To each entity, we associate a random variable which is distributed as� To each entity, we associate a random variable which is distributed as

� A has r columns  and as many rows as there are columns in X

� Then

� Given that we have probability estimates 
(from the triple store, from an expert, from IE)

)()1( ,, jijixP ασ==

);0( T
i AAN∝α

)1(ˆ
, =jixP
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(from the triple store, from an expert, from IE)
we calculate 

And interpret these as noisy estimates 

is independent Gaussian noise
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Plate Model and Solution
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� Again, the solution is obtained via low 
rank matrix reconstruction

� Noise variance: 
2σ
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f2σ
[Jiang et al., 2012] 

� Noise variance: σ
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When Binary Relations are not Enough: 
Ternary Relations

� Classical examples:  
� isFriendOf(Person, Person, Year)� isFriendOf(Person, Person, Year)

� Can be described by a three-way model (tensor) and approximated using 
tensor factorization                                                                                          

Person

Year
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[Bader et al., 2007]
Person

Person



Approximating a Tensor by Coupled Matrices

� watches(User, Movie, LastMovie)

� Approximated by coupled matrices [Rendle et al., 2010]

� Extended to include contextual information: [Rettinger et al., 2012]

LastMovie
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User

Movie



Approximating a Tensor by Coupled Matrices: 
Probabilistic Model

� watches(Person, Movie, LastMovie)

� Form a SUNS model for watches(User, Movie)
� Form a SUNS model for last(Movie, LastMovie)

� Then

))((

)),(()),((

),,((

MoviewatchesP

LastMovieMovielastPMovieUserwatchesP

LastMovieMovieUserwatchesP

=

LastMovie
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[Tresp et al., 2011]
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Challenge: Collective Learning

� In the SUNS model the dependencies were between all triples with the same 
subject entitysubject entity

� Additional information was supplied by aggregation and by sensory input

� Collective learning is a form of relational learning where information distant in 
the graph can be made useful

� Classical examples: 
� If my friends are rich, I am likely also rich
� If any of my ancestors was rich, I am  likely also  rich ….

� To address these types of issues we have developed the RESCAL tensor 

Page 83

� To address these types of issues we have developed the RESCAL tensor 
model

[Nickel et al. 2011] [Nickel et al. 2012]



2e

3e

5e

6e

Recall: From RDF to a Data Matrix

1e
2e

1e 2e L 1e 2e L 1e 2e L

1e
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1 1
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Now We Stack Relational Slices on Top of Each Other

1e
2e
3e
4e
5e

e

Persons

� We obtain a three-way tensor where

� The subject mode is indexed by 
all entities in a domain

� The object mode is also indexed 
by all entities in a domain
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ke
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M predicate1
predicate2

predicate3

6e

Cities

Movies

by all entities in a domain
� The relation mode is indexed by 

the predicates in a domain



Modeling an RDF Triple Store as a Three-Way Tensor
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Another Look at Factorization

buys Action
Nicolas

buys Action
Hero3

Nicolasa
3ActionHeroaNicolas

buys
ActionHero3
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One solution is based on the SVD: 

is corresponding row of

33,ˆ ActionHero
T
NicolasActionHeroNicolas aax =

T
Nicolasa DUis corresponding row of

T
ActionHeroa 3 DV

TUDVX =



SUNS: Different Representations in Different Roles

isFriendsWith
Nicolas

isFriendsWith Angela

Nicolasa Nicolasa Angelaa Angelaa

Nicolas
isFriendsWith
Angela
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subject
Nicolas

ithisFriendsW
object
Angela

T

subject
Nicolas

Angela
ithisFriendsW

Nicolas aax =ˆ
ithisfriendsW

object
Nicolas

subject
Angela

ithisfriendsW
object
Angela

Information flow is limited



RESCAL Solution

isFriendsWith � Each entity has only one Nicolas
isFriendsWith Angela

Nicolasa Angelaa

Nicolas
isFriendsWith
Angela

ithisFriendsWR

� Each entity has only one 
internal representation

� Each predicate has its own 
interaction matrix

Entitya

predicateR
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RESCAL Factorization
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Tasks
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Scalability
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Type Prediction
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US-Presidents Example
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Writer‘s Nationality
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Cora Citation Network
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Scalability
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V. Conclusions

� We discussed Statistical Machine Learning for Linked Data� We discussed Statistical Machine Learning for Linked Data

� The perspective is: querying Linked Data with Machine Learning

� We presented a number or approaches based on matrix factorization 
and tensor factorization to predict triples not explicitly in the data base

� We demonstrate how to include sensor information and how to combine 
it with deductive reasoning

� The tensor models are particularly suitable to exploit collective learning
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� The tensor models are particularly suitable to exploit collective learning

� We demonstrated how the learned triples can be integrated into an 
extended SPARQL query



Conclusions (part 2)

� We believe that Statistical Machine learning ultimately should support 
decisions (and should not as much be about learning some ground truth)

� Vladimir Vapnik’s prinicple: 

� "When solving a problem of interest, do not solve a more general 
[more difficult] problem as an intermediate step. Try to get the answer 
that you really need but not a more general one."
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• In so many ways, reality is ambiguous

• It’s all about making the right decisions! 



If You Want More

� Tuesday 17:00 at Machine Learning I:� Tuesday 17:00 at Machine Learning I:
� Xueyan Jiang, Yi Huang, Maximilian Nickel, and Volker Tresp. 

Combining Information Extraction, Deductive Reasoning and 
Machine Learning for Relation Prediction.

� ISWC Tutorial
� Learning on Linked Data: Tensors and their Applications in Graph-

Structured Domains
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� RESCAL available at: http://www.cip.ifi.lmu.de/~nickel/
� SUNS plugins:            http://wiki.larkc.eu/LarkcPlugins
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